2. Übung zu den direkten Suchverfahren

- 1. Man betrachte die Minimierung von $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) := x^4$ unter Verwendung der Regeln (2) der Vorlesung. (O.B.d.A. seien die Suchrichtungen alle durch s=1 gegeben.) Man zeige, dass die Konvergenzrate $\frac{|x-\alpha s|}{|x|}$ gegen 1 konvergiert, wenn der Startpunkt hinreichend nahe bei 0 liegt. Was kann man für Startpunkte $|x| \gg 0$ aussagen?.
- 2. Zu den Stützstellen $x_0, \ldots, x_4 = -2, -1, 0, 1, 2$ und der Funktion f mit $f(x) := 4(2^x x)$ bestimme man die interpolierende kubische Splinefunktion s mit den Anfangswerten s'(-2) = s''(-2) = 0. Die Splinefunktion werde dabei auf dem Teilintervall $[x_i, x_{i+1}]$ jeweils in der Form $a_i + b_i(x x_i) + c_i(x x_i)^2 + d_i(x x_i)^3$ angegeben. (Wenige Zeilen Python oder Matlab die auch mit der public-domain-Version "octave" ausführbar sind ersparen hier und bei den folgenden Aufgaben viel stumpfsinnige Rechenarbeit.)
- 3. Man bestimme die kubischen Splinefunktionen \hat{s} und \tilde{s} , die die Nullfunktion an obigen Stützstellen interpolieren und den Anfangswerten $\hat{s}'(-2) = 1$, $\hat{s}''(-2) = 0$ bzw. $\tilde{s}'(-2) = 0$, $\tilde{s}''(-2) = 1$ genügen.
- 4. Man gebe ein least-squares-Problem an, dessen Lösung die Koeffizienten ξ_1, ξ_2 der Spline-Funktion $\mathbf{s}_{LS} := s + \xi_1 \hat{s} + \xi_2 \tilde{s}$ liefert, für die \mathbf{s}_{LS} die Quadratsumme der Sprünge in der dritten Ableitung an den Stellen -1, 0, 1 minimiert.
- 5. Wie sieht das Gleichungssystem aus, wenn man statt dessen die not-a-knot-spline (d.h. stetige 3. Ableitung bei x_1 und x_3) berechnen möchte?
- 6. Wie sieht das Gleichungssystem aus, wenn man statt dessen die natürliche Spline-funktion (d.h. verschwindende 2. Ableitung bei x_0 und x_4) berechnen möchte?
- 7. Man berechne f(x), die obige least-squares-spline \mathbf{s}_{LS} , die not-a-knot-spline und die natürliche Splinefunktion an der Stelle $x = \frac{1}{2}$.

Abgabe: Terminabsprache in der Vorlesung.