

Optimierung II -8. Übungsblatt

Aufgabe 1

Heinrich Heine Universität Düsseldorf

Seien $A^{(1)}, A^{(2)}, \dots, A^{(m)} \in \mathcal{S}^n$ linear unabhängig, $b \in \mathbb{R}^m$ und $C \in \mathcal{S}^n$. Betrachten Sie das primal-duale Paar

$$\min\{\langle C, X \rangle \mid \mathcal{A}(X) = b, \ X \succeq 0, \ X \in \mathcal{S}^n\} \quad \text{und}$$
$$\max\{\langle b, y \rangle \mid \mathcal{A}^*(y) + S = C, \ S \succeq 0, \ y \in \mathbb{R}^m, \ S \in \mathcal{S}^n\}$$

mit $\mathcal{A}(X)=(\langle A^{(i)},X\rangle)_{i=1}^m$ bzw. $\mathcal{A}^*(y)=\sum_{i=1}^m A^{(i)}y_i$. Für beide Probleme sei die Slater-Bedingung erfüllt. Sei $\mu>0$ und $(\bar{X},\bar{y},\bar{S})$ eine Lösung des relaxierten KKT-Systems

$$\mathcal{A}(X) = b, \qquad \mathcal{A}^*(y) + S = C, \qquad XS = \mu \mathcal{I}, \qquad X, S \succ 0.$$

Sei \hat{X} bzw. \hat{y} eine Lösung des primalen bzw. des dualen Barriereproblems

$$\min\{\frac{1}{\mu}\langle C, X\rangle - \log \det(X) \mid \mathcal{A}(X) = b, \ X \in \mathcal{S}^n_{++}\} \quad \text{bzw.}$$
$$\max\{\frac{1}{\mu}\langle b, y\rangle + \log \det(C - \mathcal{A}^*(y)) \mid \mathcal{A}^*(y) \leq C, \ y \in \mathbb{R}^m\}.$$

Man zeige, dass $(\bar{X}, \bar{y}) = (\hat{X}, \hat{y})$ gilt und gebe $C \bullet \bar{X} - b^T \bar{y}$ explizit an.

Aufgabe 2

Man betrachte folgendes semidefinites Programm in S^3 :

$$\min\{X_{3,3} \mid 2X_{1,2} + X_{3,3} = 1, \ X_{2,2} = 0, \ X \succeq 0\}. \tag{1}$$

(a) Man überführe das obige semidefinite Programm in die primale Standardform

$$\min\{C \bullet X \mid \mathcal{A}(X) := (A_i \bullet X)_{i=1}^m = b, \ X \succeq 0, \ X \in \mathcal{S}^n\},\$$

mit geeigneten symmetrischen Matrizen $A_1, \ldots, A_m, C \in \mathcal{S}^n$ und einem geeigneten Vektor $b \in \mathbb{R}^m$. Dabei gebe man die Matrizen und den Vektor explizit an. (Die Dimension des Problems soll dabei nicht reduziert werden.) Hat das primale Problem strikt zulässige Punkte (A(X) = b, X > 0)? Man gebe alle primalen Minimalstellen an, soweit welche existieren.

(b) Man gebe das duale Problem zu dem Problem aus (a) an. Existieren dual strikt zulässige Punkte $(A^*(y) \prec C)$? Man gebe alle dualen Maximalstellen an, soweit welche existieren.

Aufgabe 3

Zu $X = X^T \in \mathbb{R}^{n \times n}$ und $y \in \mathbb{R}^n$ sei diag $(X) \in \mathbb{R}^n$ der Vektor der Diagonaleinträge von X und Diag(y) die Diagonalmatrix mit Diagonale y sowie $e := (1, \dots, 1)^T \in \mathbb{R}^n$.

- (a) Zu $\min\{C \bullet X \mid \operatorname{diag}(X) = e, X \succeq 0\}$ gebe man das duale Problem unter Verwendung der Notation Diag bzw. diag an.
- (b) Für festes $0 < \mu \in \mathbb{R}$ sei $\varphi(y,\mu) := \frac{e^T y}{\mu} + \ln(\det(C \operatorname{Diag}(y)))$ sofern $C \operatorname{Diag}(y)$ positiv definit ist. Man gebe den Gradienten von $\varphi(y,\mu)$ an.
- (c) Man gebe die Hessematrix von $\varphi(y, \mu)$ an. Die Hessematrix lässt sich mithilfe des Hadamard-Produktes (komponentenweises Produkt) kompakt darstellen.
- (d) Ist $\varphi(., \mu)$ konvex?

Programmieraufgabe

Man setze zunächst $C \in \mathbb{R}^{n \times n}$ eine Matrix mit zufällig gleichverteilten Einträgen aus [-1,0] und setze anschließend $C = \frac{1}{2}(C + C^T)$. Ist $C_{1,2}$ dann gleichverteilt in [-1,0]?

Dann bestimme man zu dem Problem aus Aufgabe 3 und obigem C primal und dual zulässige Variable X, y und setze $S := C - \text{Diag}(y) \succ 0$.

Ausgehend von diesen Startwerten wende man das HKM-Verfahren an, um für $\mu=1$ die Minimalstelle von $\varphi(\ .\ ,\mu)$ zu approximieren.

Dieses Übungsblatt wird in der Übung am Mittwoch, dem 11.12.2024, um 14:30 Uhr im Raum 25.13.U1.32 besprochen. Abgabe der Programmieraufgabe bis 20.12.2024